
BASIC/S II Documentation Page 1

* t BASIC/S II COMPILER *
* <C> 1982 by Bill Stockwell and Breeze/QSD *
* -Version 1.5 for Mod I and III- *
* -All Rights Reserved- *
* Published by: Breeze/QSD, Inc., Dallas, Texas *
* • * * * * *

Getting Started Using BASIC/S II:

IMPORTANT!! There is a variable in BASIC/S which tells BASIC/S what
disk operating system you are using. Currently, this is used so that
LOF calculations will be done properly ie when you compile a
program that does an LOF calculation, it is important for the
compiler to know what DOS is being used so that this calculation will
be done properly. <The assumption is that you will run your /CMD
files under the same system that they were compiled on. If this is
not true, you can change the value of this variable as explained
below and recompile under the other DOS). This is discussed under
"Options", when you execute BASICSII.

On the disk you receive, there will be just one copy of
BASICSII/CMD, one of COMPILE/DAT, and some supplementary demo and
utility files. Copy these to a disk of your own. One of these files
is REMPER/BAS, a utility useful for those who have programs written
for the original BASIC/S <the original BASIC/S requires percent signs
after integer variable names, whereas BASICSII regards A-Z as integer
variables - no percent signs allowed!) REMPER will remove all percent
signs from an ascii BASIC file, so that it will now be compilable by
BASICSII so long as no real variables are used in it.

Another file is QUICK/BAS, which generates an integer array and
does a quicksort on it, and prints out the results.

Also there is BINHEX/BAS, originally by Tim Mann and rewritten by
Bill Stockwell into BASIC/S compilable form. This program is for
converting HEX files to/from /CMD file format. HEX files are the
typical way in which binary files are stored on bulletin board
systems for transfer via modem.

Finally on the disk is a utility for .allowing BASICSII to handle
floating point values (in a limited way) (see the files FLOAT/TXT,
FLOAT/BAS, and SQR/BAS for more info on this).

The version of BASIC which is supported is a subset of Disk
Basic. Only simple expressions and variable names are allowed,
but most of the features and built-in functions of Level II are . .
implemented, along with the essential elements of sequential and
random disk I/0. Floating point variables are not supported
<BASICSII/CMD is 40K as it is!), but integers, strings, and arrays of

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation Page 2
type integer or string are allowed. Note: Unlike regular BASIC,
programs compiled by BASIC/S do NOT have any initialization of
variables done. Thus numeric variables do not start out as zero, or
strings as null. <See the CLEAR statement, however). One advantage
of this approach is that one compiled program can invoke another
(using the RUN statement) and all variables will be preserved.

,,
Use of constants in BASIC/Sis somewhat restricted; many statements
allow (integer) constants; most statements do NOT allow string
constansts. See the section below on the individual statements for
more details.

You
here
they

may have multiple statements
is that IF, GOTO, and GOSUB
are on (as must ON GOTO>.

per line; the only restriction
statements must begin the line

Look over some of the sample
statements are to be coded. The

programs
synta>:

on
must

-------> EXACTLY!! .,.

the disk to see
be followed ••••

< •• -------

how

••• however, the spacing is up to you. Thus, you could say FOR 1=1 TO
N or you could say FORI=1TON. The compiler allows the following
variable names (all single letters): integers A thru Z and
strings A$ thru Z$. Also, you may dimension arrays (of either type),
and your array names can be any length, with every character
significant. See the DIM statement for more on this.

REQUIREMENTS:

A TRS-BO(c) Mod I or III with at least one drive and 48K.
Repeat ••• 4BK! Two drives are certainly preferable.

RUNNING THE PROGRAM:

Just type BASICSII from Dos Ready. Be sure that you do not have too
much in high memory -- if HIGH$ is less than FEOOH, the compiler may
run out of string space (or other strange errors may occur). If vou
are running Mod I LOOS, you can run Lower Case and PDUBL, but not
much else in high memory. For best results, run with HIGH$ <HIMEM> =
FFFF, i~ possible.
(Note on LOOS 5.1 for Mod I - you may have PDUBL and KI/DVR in high
memory - nothing else - to use BASIC/S II. When you SET KI/DVR, do
NOT use type ahead).

After BASICSII begins, you may remove the disk containing it, and
insert the one with COMPILE/DAT, if necessary, (if you have only one
drive, this must be a· SYSTEM disk>. Remember -- COMPILE/DAT must be

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation Page 3
on line AT ALL TIMES while you compile, as well as the program you
wish to compile (saved in ASCII!).

REPEAT ••.• your program to compile MUST be saved in ASCII!

e.g. SAVE"BASPROGM/BAS",A <enter>

(the /BAS e>:tension is NOT required)

Now BASIC/Swill ask:

Source:
Object:
Options:

<one after another). Typically, you will answer the first two
questions, and hit <enter> on the last one. "Source" is the name of
the file to be compiled, and "Object" is the name of the /CMD file
you want to create from "Source". Thus if you had an ASCII BASIC
program called TEST/BAS that you wanted to compile, you might answer
the above with:

Source: TEST/BAS
Object: TEST/CMD:2
Options: <enter>

The options you might take are as follows:

You can specify Start Address, whether or not to list the source
file to the video during the compile, whether to disable the <break>
key (for the compiled code), and what DOS is being used. Any or all
may be specified, but those that are used should be in the correct
order. The start address tells BASICSII where in memory your object
file should load to -- the default being 5200H (20992 decimal). The
address MUST be a decimal integer, but can be positive or negative;
ie D6DBH is represented by either 55000 or -10536; BASIC/S knows what
you mean.

Use the letter N to indicate No list - BASIC/S normally lists
your source file to the video as it compiles, but if you don 7 t want
this, just answer Options: with ~N~ (after the address, if there is
one). You might want to do this if you were getting a lot of errors
which were scrolling off the screen too fast.

You can specify the DOS you are using via:
S=x < x being an integer value>.

Use:
4 for DOSPLUS 3.3
5 for LDOS
1 for Newdos/80 and DOS+ 3.4
0 for any other DOS
The default is 5 (LDOS).

•

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation
TRSDOS <Mod III> is _N_O_T __ S_U_P_P_O_R_T_E_D.

Page 4

To start the /CMD file at 56000, with no listing, and using Mod I
TRSDOS, you would answer ~options~ with

Options: 56000,N,S=O
.,,

Note that the S= option is important ONLY if your source file
computes LOF~s. Also note that BASIC/S accepts lower case responses.

A new option, added in version 1.1 of BASIC/S II, allows you to
disable the break key while the BASIC/S /CMD file that, is created
executes. This is done by typing the letter "B" among your options -
like the other options, this must come AFTER any address. Doing this
will cause the following to occur: during input, while a BASIC/S
/CMD file e>:ecutes with the "B" option, if the <break> key is typed,
then a line feed is done and the input starts over at the beginning.

THE BASIC/S SUBSET (Statements supported under BASIC/S) :

PRINT

followed by a SINGLE variable name, or an expression in
quotes. Thus:

PRINT A or
PRINT 11 Message .. or
PRINT R$

Also, you may use a semi-colon after anything being
printed in order to suppress the carriage return.

PRINT@ is also supported -- just set any integer
variable <or constant) to the value of the location to
be printed at, and you may then use any of the above forms
with it. Thus:

PRINT@N, .. TRS-80";

It is important to note that you may NOT print a list of
items when using BASIC/S; only one item (of any type) may be
PRINTed at a time. The same applies to INPUT.

LPRINT

Syntax_ for LPRINT is in every way the same as for
PRINT, except of course that LPRINT~ has no meaning.

(c)1982 by Breeze/QSD, Inc.

INPUT
BASIC/S II Documentation Page 5

You may input a single variable, of any type. You may
not input a list of variables, but INPUT"PROMPT";A is
supported (or A$).
When executing a Basic/s compiled program, if inp~t is
requested, hitting the <break> key will cause an exit
If in answer to an input prompt, you hit <Enter> only,

then the variable being inputted remains unchanged.and
the program continues (just like regular BASIC -- and this
holds regardless of variable type.

LINE INPUT

RUN A$

DEFINT

CLEAR

LINE INPUT from the keyboard is supported. Syntax
is exactly as it is in BASIC. You may LINE INPUT an
integer variable if you wish, although this would
not work in BASIC.

e.g. LINE INPUT A$ or
LINE INPUT 11 Prompt 11 ;A$ (just like in BASIC)

This statement allows you to set a string (A$ in this
case) to any DOS command, or the name of a command file
you wish to invoke, and to exit the current program and
have that command e>:ecuted. Do NOT say RUN 11 PGM 11

; this
will be not be correctly compiled! Also, RUN by itself
is incorrect.

For compatibility with the BASIC interpreter, you may
use this statement <as in DEFINT A-Z>. No other DEF
statements are accepted, and this one only reaffirms what
BASIC/S II does anyway - regards all variables as
integers unless they are suffixed with~$~.

This statement, with or without an argument, will cause
BASIC/S variables to be zeroed out. It depends on where
your /CMD file starts; if your /CMD file is in low
memory, then all memory from 41216 (decimal) up to
HIGH$ will be zeroed out, while otherwise 52OOH up to
D6D8H is zeroed out. This makes sure that your /CMD
file itself will never be affected, but that your
variables will be zeroed. This works equally well on

(c)1982 by Breeze/QSD, Inc.

GOTO In

ON GOTO

BASIC/S II Documentation Page 6
the Mod I or the Mod III - BASIC/S knows which machine
you are running it on, and will use the correct HIGH$
for your machine. DATA will also be cleared, and an
automatic RESTORE done so that the DATA pointer will be
correct.

The GOTO statement -- works just as in BASIC, but it MUST
BEGIN the line it is on. Thus CLS:GOTO 20 will not
work, although no message would be given.

As in BASIC, except that the index must be a simple
variable (not an expression). Thus

ON X GOTO 20,30,1000

No limit on the number of different lines you can
branch to, other than the limitation of 255 chars
per line. ON GOSUB is NOT supported. Like IF, GOTO,
and GOSUB, ON GOTO statements must begin the line
they are on.

GOSUB In

The standard GOSUB statement, but like GOTO, must
begin the line it is on.

READ/ DATA/ RESTORE

RESTORE

Your program may have DATA statements, containing
integer constants only (as in DATA 1,2,3} -- in all of
your DATA statements you can have a total of 383
integers (no more). It is important that these DATA
statements come before the READ statement(s) that are
to access them (physically before, that is) -- the
compiler generates code to place the data in memory
when the DATA statements are encountered. Syntax for
the READ statement is READ N -- you can read only a
single integer variable, which would normally be done
in a FOR/TO loop. One big use for this is to poke DATA
for a USR routine into memory. Before BASIC/Sallowed
READ/DATA, this process was rather clumsy.

works just like in standard BASIC.

(c)1982 by Breeze/QSD, Inc.

IF

BASIC/S II Documentation Page 7

A very restricted IF statement -- you may only compare
two strings (for equality or in the< direction>,
or two simple integers (variables or constants) .•

-Thus (for strings) :
IF A$(B$ THEN 20

or IF A$=B$ THEN 100

The compare must be in the~<~ direction only, or with
~=~. You may check whether a string is null via

IF A$="" THEN 200 (for example)
but this is the only time you may test a string against
a constant.

For integers :
IF A=B THEN 100

or IF A<B THEN 50
(and either A or B may be an integer constant, as
in IF A<72 THEN 200 >.

Note:
begin the
supported:

SOTO, GOSUB, and IF statements MUST
line that they are on. Also, ELSE is now

you may follow any IF statement with ELSE, followed
by as many statements as you can fit on one line, so
long as they do not need to start the line they are on.
Thus IF, SOTO, SOSUB, and ON SOTO statements may not
follow an ELSE, but any other statement may do so.

FOR/NEXT

USR

The For/Ne>:t loop is implemented for INTEGERS only. You
may code

FOR A=B TO C

NEXT A

Constants may be used where Band Care indicated,
as long as they are integers (positive, negative, or
zero).
The variable in the NEXT statement is NOT optional.
There is no STEP clause.
FOR/NEXT loops may be (statically) nested.

,.

A single USR call is allowed. It must be set up by

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation
DEFUSR, and the calling
decimal integer constant.

DEFUSR=-1000

address
Thus:

must be a
Page 8

simple

Note: Ther-e is no VARPTR statement. However, the
addresses of all simple variables in BASIC/Sare always
the same and may be calculated as follows:

If A is the ascii code of the variable in question, then
the VARPTR is:

INTEGERS: -11406 + 2 * <A - 65>;
STRINGS : -23192 + 256 * <A - 65).

Strings are stored a little differently than in Level
II. Each string is allocated 256 bytes, the first of
which contains the length of the string (0 to 255) and
the rest of which contain the string itself. The
Varptr points to the length byte.

Y=USR<X>

This causes the routine whose address was defined by a
previous DEFUSR statement to be called. The current
value of Xis loaded into the HL register pair before
the call is made, and on return, Y is given the value
in the HL register pair. Do NOT call the ROM routines
at OA7F and OA9A for this. Any integer variables may
be used, not just X and Y. Also, a (decimal) integer
constant may be used as the argument to be passed.

SET, RESET, and POINT

Use integers (either variables (followed by> or
constants) as the arguments. As with most BASIC/S
functions, they may not be used in more complex
expressions. Thus

SET<X,20)
A=POINT<B,C)

The latter is the only way to access POINT - it cannot
be invoked in an IF statement.

PEEK and POKE

Exactly as in Level II, except that
the arguments must be integers -- (constants
or variables). Thus

A=PEEK<M>

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation
POKE A,B
POKE 15360,191
Z=PEEK<14312>

Page 9

INP and OUT

AND/OR

Syntax here is just like that for PEEK and POKE,
i.e. you may use integer variables or constants
as the arguments (no expressions).

A=INP(P> (input a byte from port P and
store in A}

OUT P,V (output value V to port P>
OUT 255,1
S=INP(232)

You may use these two functions in order to calculate
an AND/OR result (for integer variables or constants)
and store the answer in an integer variable. Thus

X=Y AND 20
U=A ORB

CLS -- Clear the screen

RND

DIM

Random integers between 1 and N may be generated by the
statement X=RND(N). The left hand side may be any integer
variable. The argument is required and may be an
integer constant if you like. The statement RANDOM
is also supported, to reseed the random number
generator.

You can DIMension up to 20 arrays in a program to be compiled
with BASIC/S - they can be either integer or string,as
distinguished by the presence of a$.

Array names may be any
length (up to 255) with every character significant.
ONLY letters A-Z should be used within an array name.
Thus

-
DIM ARRAY<20,7),ST$(15}

You may have one or two dimensions for each array - no

(c)1982 by Breeze/QSD, Inc.

56000;

SCAN

BASIC/S II Documentation Page 10
more. DO NOT use BASIC keywords in your array names.
Be careful about your available array space - BASIC/S
will tell you if your array space will overlay BASIC/S
data areas or will exceed the 64K memory limit.
If this happens, try recompiling with a start address of

this will give Vou about 19.75 K of space for your arrays,
as it puts your /CMD file in high memory instead of low.
Still, 19.75K is only enough room for a string array of
dimension 79 (79 * 256 = 20,224). With integer
arrays, you can use much larger dimensions.

Syntax for using array elements:
For the most part~ you can use your array variables just
like any other variables; and you may always use integer
constants (as well as variables) for the subscripts).
Thus

READ NUM(I>
INPUT ARRAY<?>
PRINT ST$<U>;
A$=LEFT$(ST$(5),NUM(I)>

The exceptions are as follows:
When an array element is on the left hand side of the
:,,=:,, sign, the right hand side MUST be a simple variable
or constant of the same type - no expressions allowed.
Thus ST$(1)=LEFT$(A$,2)is not allowed; you would need to
set H$=LEFT$(A$,2) and then ST$(1)=H$. However, it is
OK to set an array element to a constant, as in
ST$(5)= 11 HELL0 11 or ARRAY(14,6)=12.
Also, any statement that references an array element
should contain NO numeric constants of any kind, except
for (possibly> subscripts to the array itself.
One exception here is that array elements may be
compared via the IF statement, and the line number
reference will not be misconstrued. So

IF ST$<1><ST$(I) THEN 75
is OK; just be sure to follow the syntax in all other
respects. But something like

LINE INPUT#1,ST$(I)
or PUT 1 , L < I >
won:,,t work as the :,,1~ will be misunderstood, and translated
to a temporary integer variable, which won:,,t work.
Thus in general, the statements in which you may not
reference array elements are most of the DISK I/0
statements (OPEN, FIELD, GET, PUT, LINE INPUT#,
PRINT#), and PRINT~.

This statement allows the user to "scan" a file or device for a
single byte (similar to INKEY$ for the keyboard). First you OPEN the

<c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation
file or device in question for input; then

SCAN b,A$

Page 11

will read a byte from the file or device with DCB# b (must be a
constant, 0-9) into A$.

SET EOF

<For use with LDOS only). This statement allows you to truncate
a random access file at a specified record. If you have a random
access file <DCB 1 or 2 only, in BASIC/S) open, then to cause it to
have 50 records (instead of say 100), just GET 1,R (where R=SO> and
then SET EOF1 (exactly as in LBASIC>. Of course you need to close
the file to make sure the directory entry is updated. This could
also be done via PUT instead of GET; you just need to be positioned
at the correct place in the file before you do the SET EOF. DO NOT
try to SET EOF past the EOF - this bomb out with a DOS error.

CMD A$

Allows you to temporarily exit from your BASIC/S compiled code and
execute a DOS command, and have control returned to your compiled
program afterwards. Just set any simple string variable to the
command you wish to e>:ecute, and then do a CMD A$. Be sure the
command executed does not overwrite your code; compile your program
starting at 7000H or higher to avoid this problem (or even at
56000~).

ON ERROR

A limited form of error trapping is possible with BASIC/S.
In this form, you may trap for DOS errors only, not errors in BASIC
or ROM processing. There is no ERL or RESUME in this form; all you
can do is take some action based on the DOS error that occurred.
First you establish your error trap routine with ON ERROR. Your ON
ERROR statement MUST occur AFTER the line in your error trap routine
you want to branch to; thus

50 ON ERROR GOTO 100
is no good since 100 comes later than 50. So your program would
normally start out with a jump around the first line of your error
trap, to your ON ERROR statement: -

10 GOTO 40
20 A=ERR

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation
30 GOTO 2000:?main error routine at 2000
40 ON ERROR GOTO 20

Page 12

BASIC/S must already KNOW where in memory your error routine will be
when it encounters the ON ERROR statement; hence the requirement for
the error trap to come before ON ERROR.
The very FIRST thing ytJur error trap must do is set some integer
variable to ERR, to grab onto the error code. If you wait to do
this, ERR will change and not be relevant. Finally, the code
returned in ERR is the same as the DOS error codes that are explained
in your DOS manual, which are returned in register A whenever a DOS
error occurs. For example, if ERR were 24, this would indicate "File
not found".

ASSIGNMENT statement:

Following are the allowed forms of the assignment statement.

INTEGERS:

Integer arithmetic is limited to +,-,*,/ and only 2
operands allowed on the right hand side. No builtin functions
for integers. Constants may be used, however.

Thus:
X=A*B
X=S-B

Note that unary minus is not allowed here (for variables) ie X=-Y+Z
is no good, while X=Z-Y is OK. However, with constants you may use
unary minus freely. Anything of the form X=AsB is OK, where A and B
are integer variables or constants ands is one of +,-~*,I, as long
as you don't have two minus signs adjacent.

STRINGS

A$=B$
A$="constant"
A$=B$+C$ (simple concatenation>

Also we have the builtin string functions ASC, LEN,
CHR$, LEFT$, VAL, RIGHT$, MID$, STR$, and INSTR.
Where numeric arguments are required in the
string functions, simple integer variables or constants
must be used - no expressions. The actual string arguments
cannot be constants, but:

A$=LEFT$(X$,2)

(c)1982 by Breeze/QSD, Inc.

HEX$

BASIC/S II Documentation
(for example) would be OK.

Page 13

Also~ expressions must be reduced to their simplest
form e.g., concatenation within a function or
function composition is not allowed. Break it down!

Note: The INSTR function differs from the regular
DISK BASIC one in that no starting position m•y be
specified -- syntax is just N=INSTRCA$,B$).
However, unlike previous versions of BASIC/S, ALL of
B$ is searched for, not just the first character.

MID$ note -- you can use MID$ on the left hand side
of the= sign, and in that case, you can use either
of the two forms MID$(A$,N)=B$ or MID$(A$,N,L>=B$
but they will give the same results, i.e. the length of
B$ is used, Lis ignored in the second form. If the
source string (B$) is null, nothing is done.

Note III: The INKEV$ function is implemented, and
must be used in the form: A$=INKEY$ (or B$, etc.>.

This is a hex conversion function, not supported by
TRS-80 Disk Basic, but is supported under Microsoft
BASIC-BO (and by their BASIC Compiler>. BASIC/S II also
supports it; what it does is to take an integer argument
(variable or constant) and convert it to a hex string
equivalent in value to the original integer. Thus

A$=HEX$(-1):PRINT A$

would print out 11 FFFF 11 (no quotes).

DISK I/0 statements

Essentially, you have ten disk I/0 buffers available
for use (0-9), all of which may be used for sequential access,
and two (1 and 2> of which may be used for random access. Here
are the specifics:

OPEN

The OPEN statement is essentially that of disk BASIC,
except that the filespec must be a string variable and
not an expression in quotes. Syntax is

OPEN"m",b,FS<,r>

(c)1982 by Breeze/QSD, Inc.

where m
b

F$
r

BASIC/S II Documentation
=mode= I,O~R, or E
=buffer= (0-9) (constant only)

(must be 1 or 2 for direct access)
= filespec (variable only)

Page 14

= logical record length (optional -- may be
either an integer constant or an integer
'-'ariable).

BASIC/S makes few restrictions on your use of the
disk I/0 statements, so be careful. For example, if
you wanted to open a sequential file with an LRECL of
16, you could. However, you would probably be well
advised to stick to direct access files for this!

OPEN"E" is 1 i ke OPEN 11 0 11 e>:cept you start out
positioned at the end of the file.

Sequential I/0 is done with the LINE INPUT# and PRINT#
statements. Just specify a buffer number adjacent to the#,
and you are ready to go. Only a simple string variable may

be input or output, although PRINT#1,A$; will disable
the carriage return.

Random disk 1/0 is accomplished via the following:

FIELD

LSET

You must field your buffer in order
between your strings and the disk file
Syntax is:

to communicate
being accessed.

FIELD 1,nn AS AS,mm AS 8$, •••

-- the buffer can be 1 or 2, the strings can be any of
A$ thru 2$ (no array references allowed here!), and
the numbers "nn", "mm:- etc. must be integer constants
(1-255 -- 0 is not allowed). Also you can:ot really use
a multiple FIELD stmts for the same file -- the
second will override the first. Moreover, the
statements to process a random access file must be
statically nested -- i.e. do not GOSUB or GOTO a later
line to FIELD a buffer and then return to do your LSETs
and PUTs, etc. Just OPEN the file, FIELD the buffer,
process it, and CLOSE it, without GOSUBS and GOTOS.
<At least, don"t branch anywhere outside the range
of statements between the OPEN and CLOSE stmts).

To place your strings into the buffer prior to being

(c)1982 by Breeze/QSD, Inc.

PUT

GET

LOF

BASIC/S II Documentation
PUT to the disk, use LSET. Thus

LSET A$=B$

Page 15

where A$ is one of the strings mentioned in your FIELD
statement. If LEN(B$) is less than that of the field
variable A$, it will be filled out with spaces- in the
buffer. If greater, only the leftmost portion of B$
(for the fielding length of A$) will be in the buffer.

Syntax is PUT b,N where bis the buffer number (1 or
2) and N is any integer variable4 containing the
record number to be put. The record number variable is
not optional.

As in GET 1,R -- gets the Rth record from the disk
file, and places its contents into the string variables
mentioned in the FIELD statement.

The LOF function is implemented and syntax is

N=LOF(b)

where b is the buffer number (1 or 2 -- must
constant). This returns the number of records
currently open file with buffer b.

be a
in the

CVI and MK!$

CLOSE

For convenience in reading and writing integers
from/to direct access files, these functions are
implemented as in TRSDOS. In case you were mystified
as to exactly what they did -- well, if the integer N
has the 2 byte representation <L,H>, then MKI$(N} is
just CHR$(L)+CHR$(H). CVI just does the exact reverse.
As with most BASIC/S functions, these may be used only
with simple integer/string variables.

There is no global close in BASIC/S -- you must mention
the buffer number. Thus,

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation Page 16

CLOSE 5 ,,,

would close the file with
a file that isn't open,
:-FILE NOT OPEN'.

buffer number 5. If you close
you will bomb out with

EDF

This isn't a function as such; it is to be used in a
special form of the IF statement to check for EOF when
inputting from a file. Simply say

IF EOF(b) THEN 200

(or whatever line number) to check for end of file on
buffer b (0-9)

BASIC/S Memory Map

Following is a map of memory from 5200H up to HIGH$, showing
how BASIC/S uses the memory in your TRS-80 (48K):

/CMD file in low mem

5200 ----------

your /CMD file

A100 ----------

in high mem

Array space (20K)

This area is always reserved for BASIC/S variables
and DCB's.

D7D8 ---------

Free area for your own use (e.g. USR routines).

DACO ----------

Array space
<DACO ·:to HIGH$)

HIGH$----------

/CMD file

--

(c)1982 by Breeze/QSD, Inc.

BASIC/S II Documentation Page 17

--DISCLAIMER OF WARRANTIES & LIMITATIONS OF LIABILITIES --

We have taken great care in preparing this package. ~We make no
expressed or implied warranty of any kind with regard to this manual
or to BASICS/II. In NO event shall we be liable for incidental or
consequential damage in connection with or arising out of the
performance of this program.

BASICS/II <c>1982 by Bill Stockwell and Breeze/QSD, Inc.

All rights reserved. No part of this manual and NONE of the programs
may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by
information storage retrieval system, BBS, etc. Registered owners are
entitled to make copies of the disk for their OWN use only~

Questions should be addressed to:

Bill Stockwell
4771 NW 24th #228N
Oklahoma City OK 73127
(405) 947-4156
Mnet 70070,320

Bill Stockwell may also be reached on the QSD Sig
on MicroNet. Leave a message to 70001,610 for info
or from the OK prompt, type R QSD<enter>.

Published by:
PowerSoft - a division of Breeze/QSD, Inc.
11500 Stemmons Expressway Suite 125
Dallas, Texas 75229

TRS-80 and TRSDOS are registered copyrights of the TANDY CORP.
LDOS is a registered trademark of Logical Systems, Inc.
Newdos and Newdos/80 are trademarks of Apparat
Dosplus is a trademark of Micro Systems Software

(c)1982 by Breeze/QSD, Inc.

•

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf

